Subject code: F.3(1)	Subject name: Artific	cial Intelligence	
Study load: 5 ECTS	Load of contact hours: 60	Study semester: Autumn	Assessment: 5-points grade credit
Objectives:	The goal of the course is to study the theoretical foundations and principles of building information systems based on the representation, storage and processing of knowledge that implement intellectual knowledge output		
Course outline:	 Topics covered: Formal models for the representation of knowledge in artificial intelligence. Predicate calculus and logical programming for AI problems' solution. Problem solving through search, state space search strategies. Uncertain knowledge and reasoning in conditions of uncertainty. Pattern recognition methods in the development of intelligent information systems. Expert assessment and methods for processing expert assessments. Ontological modeling of the semantics of the knowledge subject area. Multi-agent Intelligent Systems. Planning tasks in AI. Natural Language Analysis. 		
	Contact lessons will be individual tasks.	divided into two parts:	lectures and labs with
Learning Outcomes:	By the end of the cours and attitudes) should b 1 – critically evaluate of intelligence developme 2 – critically analyse a support systems, exper processing systems; 3 – critically analyse a for the representation of 4 – critically analyse a artificial intelligence sy incomplete and unrelia 5 – develop application 6 – program in Prolog,	se students (in the terms e able to: concepts and modern the ent; nd evaluate principles o t systems and natural la nd evaluate architecture of knowledge in artificia nd evaluate modern the systems that implement a ble knowledge; n of intelligent information Python, NetLogo.	of knowledge, skills, eories of the artificial f building decision nguage information s of the formal models al intelligence. pries of constructing a fuzzy conclusion on ion technology;

Assessment Methods:	Assessment is split into two parts: test on lectures, individual tasks
	on labs, including 10 mandatory presentations (60% of points), and
	individual project at the end of the course (40% of points).
Teacher(s):	Veronika Garshina
Prerequisite	It requires prior knowledge of computer science, programming,
subject(s):	discrete mathematics, probability theory, models and methods of
~~~ <b>j</b> • • • (*) •	decision making.
Compulsory	Russell S. Artificial Intelligence: A Modern Approach / S. Russell,
Literature:	P.Norvig / - M .: Williams, 20061408 p.
	Lugger, J.F. Artificial Intelligence: Strategies and Methods for
	Solving Complex Problems / J.F. Lugger. / - M.: Williams, 2003
	864 p.
	Joshi, Practice. Artificial intelligence with examples in Python
	SPb. : LLC "Dialectics", 2019 448 p.
	Sergienko M.A. Development of expert systems in the CLIPS
	language: textbook. allowance / Sergienko M.A., Garshina V.V. / -
	Voronezh, VSU Publishing House, 2014.
	Ledeneva T.M., Tatarkin D.S., Tarasova A. C. Fundamentals of
	fuzzy modeling in MatLab: Textbook. allowance. Voronezh:
	Publishing and Printing Center of Voronezh State University, 2006.,
	51 p.
Replacement	Allemang, Dean Semantic web for the working ontologist modeling
Literature:	in RDF, RDFS and OWL / Dean Allemang, James A. Hendler-, 2-nd.
	Ed Elsevier Inc., 2011.
	Martin O. M. Bayesian analysis in Python - M.: DMK Press, 2020
	340 p .
	Deepti Chopra, Nisheeth Joshi, Iti Mathur Mastering Natural
	Language Processing with Python. : Packt Publishing, 2016.
Participation	Lower limit of lectures attendance is 70%, each assessment and
requirements:	individual presentation must be presented by the end of the course
Independent work:	1. Prolog Syntax. Output Management in Prolog. Denial, clipping,
	search with return - backtracking.
	2. Search management and its implementation in the state space in
	Prolog (depth, width search). State space search management:
	recursive search Sample search.
	3. Heuristic search algorithms using the example of algorithm A *.
	4. Development of intelligent systems based on fuzzy knowledge -
	Bayesian network-based trust mode and influence diagrams in the
	5 Modeling fuzzy informed and fuzzy control of technical systems
	in MATLAB (module Toolbox fuzzy logic Matlab)
	6 Recognition system development based on a naive Raves
	classifier
	7 Methods for measuring the degree of the objects influence.
	ranking pairwise comparison direct assessment
	Methods of the expert groups' assessment analysis
	8. Development of the domain ontology (Protege) Resource
	Description Framework (RDF). SPAROL. SWRL rules.

	<ol> <li>9. Applying a multi-agent approach to resource management tasks, modeling the behavior of complex information systems. Development of models in the NetLogo.</li> <li>10. Planning tasks in AI. DPS and planning for multiple agents. Morphological, syntactic and semantic parsing for natural language (Python, NLTK).</li> <li>11. TextMining, recognition of the named entities (Python, NLTK).</li> <li>12. Classification and clustering of texts. Sentiment analysis (Python, NLTK).</li> <li>13. Individual presentations of final projects</li> </ol>	
Grading criteria scale		
or the minimal level	Failed< 50 points	
necessary for passing	Passed, grade 3 50-69 points	
the subject:	Passed, grade 4 70-89 points	
	Passed, grade 5 90-100 points	
	Ongoing assessment:	
	Tests: 20 points	
	Homework reports: 30 points	
	Presentation: 10 points	
	<b>Final Project:</b> Final lab test: 25 points Final projects demonstration: 15 points	
Information about the		
course:	Room, on at	
1) Date 1	Lecture 1	
	Classroom presentation: Basic concepts and basic approaches of	
	artificial intelligence (AI). Topics of modern research in the field of	
	AI. Formal models for the representation of knowledge in artificial intelligence: production frames conceptual graphs and network	
	models.	
2) Date 2	Lecture 2	
,	Classroom presentation: Predicate calculus and logical programming	
	for AI problems solution. The basic principles of declarative	
	programming. Language of logical programming - Prolog.	
3) Date 3	Lab I Lab: Prolog Syntox, Output Management in Prolog, Donial aligning	
	search with return - backtracking	
	Homework: learning language documentation	
4) Date 4	Lab 2	
·	Students' presentations: Individual lab task	
5) Date 5	Lecture 3	
	Classroom presentation: Problem solving through search, state space	
	search strategies with the example in Prolog.	

6) Date 6	Lab 3
	Lab: Search management and its implementation in the state space in
	Prolog (depth, width search). State space search management:
	recursive search Sample search.
	Homework: the study of search algorithms in the state space.
	Students' presentations: Individual lab task.
7) Date 7	Lab 4
	Lab: Heuristic search algorithms using the example of algorithm A *.
	Students' presentations: Individual lab task.
8) Date 8	Lecture 4
	Classroom presentation: Uncertain knowledge and reasoning in the
	conditions of uncertainty. Bayesian network-based trust mode.
9) Date 9	Lab 5
	Lab: Development of intelligent systems based on fuzzy knowledge -
	Bayesian network-based trust mode and influence diagrams in the
	Hugin Expert system.
	Homework: learning the interface of the Hugin Expert system.
10) Date 10	
11) D 4 11	Students' presentations: Individual lab task
11) Date 11	Lecture 5 Classroom anomatation Democratation of formula day haved
	Classroom presentation: Representation of fuzzy knowledge based
	on the apparatus of fuzzy sets. The basic principles of the
12) D-4- 12	Implementation of fuzzy inference and fuzzy control.
12) Date 12	Lao / Lab. Madaling formy information and formy control of technical
	Lab: Modeling Juzzy Interence and Juzzy control of technical systems in MATLAP (module Teelbox fuzzy logic Metleb)
	Homework: to study the documentation of Toolbox fuzzy logic
	module in Matlah
13) Date 13	Lah 8
	Students' presentations: Individual lab task
14) Date 14	Lecture 6
	Classroom presentation: Pattern recognition methods in the
	development of intelligent information systems.
15) Date 15	Lab 9
	Lab: Recognition system development based on a naive Bayes
	classifier
16) Date 16	Lab 10
,	Students' presentations: Individual lab task
17) Date 17	Lecture 7
	Classroom presentation: Expert assessment and methods for
	processing expert assessments.
18) Date 18	Lab 11
	Lab: Methods for measuring the degree of the objects' influence:
	ranking, pairwise comparison, direct assessment.
	Methods of the expert groups' assessment analysis.
	Students' presentations: Individual lab task.
19) Date 19	Lecture 8
	Classroom presentation: Ontological modeling of the semantics of
	the subject area of knowledge.
20) Date 20	Lab 12

	Lab: Development of the domain ontology (Protege). Resource
	Description Framework (RDF). SPARQL, SWRL rules.
	Homework: the study of GUI Protege, learning language
	documentation
21) Date 21	Lab 13
	Students' presentations: Individual lab task
22) Date 22	Lecture 9
	Classroom presentation: Multi-agent Intelligent Systems.
23) Date 23	Lab 14
	Lab: Applying a multi-agent approach to resource management tasks,
	modeling the behavior of complex information systems. Developing
	models in NetLogo.
	Homework: learning language documentation
24) Date 24	Lab 15
	Lab: Planning tasks in AI. DPS and Planning for multiple agents
25) Date 25	Lab 16
	Students' presentations: Individual lab task
26) Date 26	Lecture 10
	Classroom presentation: Natural Language Analysis.
27) Date 27	Lab 17
	Lab: Morphological, syntactic and semantic parsing for natural
	language (Python, NLTK)
	Homework: learning language documentation
28) Date 28	Lab 18
	Lab: TextMining, named entities recognition (Python, NLTK)
	Homework: learning documentation
29) Date 29	Lab 19
	Lab: Classification and clustering of texts. Sentiment analysis
	(Python, NLTK).
	Homework: learning documentation
30) Date 30	Lab 20
	Students' presentations: Individual lab task and Final lab test