Subject code:	Subject name: Computer Graphics		
G.4(2)			
Study load: 5 ECTS	Load of contact hours: 67	Study semester: Autumn	Assessment: 5-points grade credit
Objectives:	Mastering algorithms and methods for constructing two-dimensional and three-dimensional computer graphics and graphics processing technology. Knowledge of the basic algorithms for processing graphic information.		
Course outline:	 Two-dimensional transformations Transformations of three-dimensional graphics Projections Image of three-dimensional objects Algorithms for removing invisible lines and surfaces Filling methods OpenGL library Computer graphics hardware Contact lessons will be divided into two parts: lectures and laboratory with individual and team tasks. 		
Learning Outcomes:	 By the end of the course students (in the terms of knowledge, skills, and attitudes) should be able to: 1 - critically evaluate the theoretical and technical foundations of computer graphics; 2 - programmatically implement the basic algorithms for raster and vector graphics; 3 - use modern hardware for computer graphics; 4 - implement the basic algorithms for raster and vector graphics; 5 - create and modify graphic objects in the most common formats for specific tasks. 		
Assessment Methods:	Assessment is split into	o two parts: individual	tasks, and some
Teacher(s):	Vakhtin Alexsey		
Prerequisite	None		
subject(s): Compulsory Literature:	1. Evgeny Shikin, Alex to Programmable Grap Computer Graphics, G	key Boreskov Compute hics Hardware (Chapn eometric Modeling, an	er Graphics: From Pixels nan & Hall/CRC d Animation Series) –
	 2. Madsen R., Madsen 2016. 3. John Clevenger, V. S Programming in Open 	S OpenGL Game D Scott Gordon - Compu GL with Java – 2017.	evelopment By Example ter Graphics
Replacement Literature:	1. Kessenich J., Sellers Guide. The Official Gu	G., Shreiner D Ope ide to Learning Open	nGL Programming GL – 2017.

	2. Graham Sellers, Richard S. Wright Jr., Nicholas Haemel -		
	OpenGL SuperBible Comprehensive Tutorial and Reference, 7th		
	Edition – 2015.		
Participation	Lower limit of lectures attendance is 80%, each test and individual		
requirements:	tasks must be presented by end of the course.		
Independent work:	1. Creation of a vector logo in a vector editor.		
	2. Processing raster images in a raster editor.		
	3. Tasks with fractal graphics.		
	4. Tasks with raster algorithms.		
	5. Transformations on the plane and animation.		
	6. Three-dimensional transformations and obtaining projections.		
	7. Construction of three-dimensional scenes.		
	8. Working with the OpenGL library.		
Grading criteria scale			
or the minimal level	Failed < 50 points		
necessary for passing	Passed, grade 3 50-69 points		
the subject:	Passed, grade 4 70-89 points		
	Passed, grade 5 90-100 points		
	Points distribution:		
	Ongoing assessment:		
	Tests: 25 points		
	Individual Tasks: 10 points		
	Homework reports: 10 points		
	Presentations (3 per student): 15 points		
	Final Group Project		
	GameCraft Analyses: 10 points		
	Balancing Report: 5 points		
	Playtest Report: 10 points		
	Pitch session: 5 points		
	Final Presentation: 10 points		
Information about	Deem on et		
the course:	Koom, on at		
1) Date 1	Lecture 1		
I) Date I	Two-dimensional transformations		
2) Date 2	Laboratory 1		
-) Dutt -	Creation of a vector logo in a vector editor.		
3) Date 3	Laboratory 2		
•) 2 •	Creation of a vector logo in a vector editor.		
4) Date 4	Lecture 2		
)	Transformations of three-dimensional graphics.		
5) Date 5	Laboratory 3		
,	Processing raster images in a raster editor.		
6) Date 6	Laboratory 4		
,	Processing raster images in a raster editor.		

7) Date 7	Lecture 3
	Projections.
8) Date 8	Laboratory 5
	Tasks with fractal graphics.
9) Date 9	Laboratory 6
	Tasks with fractal graphics.
10) Date 10	Lecture 4
	Image of three-dimensional objects.
11) Date 11	Laboratory 7
	Tasks with raster algorithms.
12) Date 12	Laboratory 8
	Tasks with raster algorithms.
13) Date 13	Lecture 5
	Algorithms for removing invisible lines and surfaces.
14) Date 14	Laboratory 9
	Transformations on the plane and animation.
15) Date 15	Laboratory 10
	Transformations on the plane and animation.
16) Date 16	Lecture 6
	Filling methods.
17) Date 17	Laboratory 11
	Three-dimensional transformations and obtaining projections.
18) Date 18	Laboratory 12
	Three-dimensional transformations and obtaining projections.
19) Date 19	Lecture 7
	OpenGL library.
20) Date 20	Laboratory 13
	Construction of three-dimensional scenes.
21) Date 21	Laboratory 14
	Construction of three-dimensional scenes.
22) Date 22	Lecture 8
	Computer graphics hardware.
23) Date 23	Laboratory 15
	Working with the OpenGL library.
24) Date 24	Laboratory 16
	Working with the OpenGL library.
25) Date 25	Laboratory 17
	Working with the OpenGL library.