Subject code:	Subject name: Syste	m Engineering	
P.3(2)			
Study load: 4 ECTS	Load of contact hours: 50	Study semester: Spring	Assessment: Exam
Objectives:	The purpose of the course is to study a systematic approach as the basis of engineering thinking.		
Course outline:	 Topics covered: 1. What is systems engineering and the role of systems engineer 2. The concept of the system 3. The concept of a life cycle 4. The basic system engineering standard 5. System Definition Practices - Requirements 6. System Definition Practices - Architecture 7. Systems of systems. Organizational engineering 8. System Implementation Practices 9. System Engineering Software 10. Planning the life cycle of software systems Contact lessons will be divided into two parts: lectures&practicals and system engineering workshops with individual tasks. 		
Learning Outcomes:	At the end of the course, the student should have a holistic view of systems engineering as an interdisciplinary field of technical sciences, focused on the problems of creating effective, integrated systems suitable to meet the identified requirements. The student should be able to identify stakeholders, formulate and analyze system requirements, and develop system architecture using simple examples.		
Assessment Methods: Teacher(s):	Assessment of student knowledge is based on the results of checking two self-written essays. The first is about a simple household system, the second is about a software system. Essay topics are selected by the student on their own and agreed with the teacher. Sergey Makhortov		
1 cacher (5).			
Prerequisite subject(s):		e of computer science, els, models and decisio	, programming, discrete on-making methods is
Compulsory Literature:	Kosyakov A. System Engineering. Principles and practice / A. Kosyakov, W. Sweet, S. Seymour, S. Beamer Per. from English V. Batovrin M .: DMK Press, 2014 636 p. Shamie K. Systems Engineering for Dummies: IBM Limited Edition. Per. from English / K. Chamie John Wiley & Sons, Inc 2014 69 s.		
Replacement Literature:		m engineering thinking Lab M, 2015 302	g. Textbook [Electronic 2 p. URL:

	http://techinvestlab.ru/files/systems_engineering_thinking/systems_e		
	ngineering thinking 2015.pdf.		
Participation	Lower limit of lectures attendance is 80%, each essay must be		
requirements:	presented by end of the course.		
- 1			
Independent work:	1. Essays on the household system		
L	2. Essay on the software system		
Grading criteria scale	Points distribution:		
or the minimal level			
necessary for passing	Failed < 50 points		
the subject:	Passed, grade 3 50-69 points		
	Passed, grade 4 70-89 points		
	Passed, grade 5 >=90 points		
	1 assed, grade 5 7-90 points		
	Ongoing assassment.		
	Ongoing assessment:		
	Home system essay: 50 points Essay on the software system: 50 points		
Information about	Essay on the software system. 30 points		
the course:	Room on at		
the course:	Room, on at		
1) Date 1	Lecture 1. The subject of the study of systems engineering and the		
-)	role of systems engineer.		
	Subject of the study of systems engineering, it differs from the		
	engineers in the field of engineering and management. The role of a		
	system engineer, the differences between a system engineer and a		
	project manager and engineers by profession. The relationship and		
	differences of systems engineering, engineering and research.		
2) Date 2	Lecture 2. <i>The concept of the system</i> .		
,	The counterintuitiveness of a systematic approach. The concept of		
	the system. Parties concerned. Function and design. Hamburger		
	Chart. The mechanism, architecture, modularity of the system.		
	Holarchy. Targeted and supporting systems, systems in the		
	operational environment.		
	Practical 2		
	Strengthening knowledge based on examples.		
3) Date 3	Lecture 3. The life cycle of the system.		
	Life cycle concept. Incremental resource allocation (ICM). Lifecycle		
	management, features of PLM systems. Life cycle from the point of		
	view of a system engineer, project manager, engineer by profession.		
	Types of life cycles. Formalisms of life cycle representation.		
	Typicality and diversity of life cycles.		
4) Date 4	Lecture 4. The main standard of systems engineering.		
	Capital projects. Complex Life Cycle Notation. Summary of ISO		
	15288 (Systems Engineering Life Cycle Practices). Four main groups		
	of practices. Differentiation of areas of system engineer and project		
	manager. The life cycle of systems engineering practices.		
	Practical 4		
	Strengthening knowledge based on examples.		

5) Date 5	Lecture 5. System definition practices – requirements.
	The cost of errors. The basic principle of decision making. Ontology
	of requirements, types of requirements. Structure engineering
	requirements. The work of an engineer according to requirements.
	Requirement languages. Standards ISO 29148, ISO 15926. Link
	engineering requirements with architecture.
6) Date 6	Lecture 6. System Definition Practices - Architecture.
	Dependence of architecture on requirements. An example of building
	an architecture. Work and competencies of a system architect.
	Systems architecture engineering, ISO 42010 standard. Architectural
	descriptions, description methods and description groups. Synthetic
	and projection approaches. Architectural practices. ArchiMate
	language, its purpose, advantages and disadvantages.
	Practical 6
	Strengthening knowledge based on examples.
7) Date 7	Lecture 7. Systems of systems. Organizational Engineering.
	Key issues, features of systems systems, evolution. Classification of
	systems systems, examples. Organization as a system. Organizational
	architecture and its ontology. Levels and the problem of their
	integration. DEMO methodology and other methodologies.
	Situational engineering of methods as a methodology of
	organizational architecture. Standards ISO 24744 and OMG SPEM
	2.0.
8) Date 8	Lecture 8. System implementation practices.
	Planning and manufacturing the system. System integration and its
	role. Ways of implementation. Verification and validation, V-
	diagram. Targeted engineering and engineering justification.
	Standard ISO 15026. The choice of the type of life cycle. Errors in
	the interaction of managers and engineers. ICM method, its rationale,
	features and benefits. The problem of integrating life cycle data and
	the ISO 15926 standard.
	Practical 8
	Strengthening knowledge based on examples.
9) Date 9	Lecture 9. Systems Engineering Software.
	Application of systems engineering to the creation of complex
	software systems. Systems Software Engineering (SwSE). SwSE and
	software engineering, SwSE and project management. SwSE
	functions. Requirements analysis. Software design. Process planning.
	Process control. Verification, validation and testing.
10) Date 10	SE Workshop 1. System concept.
11) Date 11	SE Workshop 2. System life cycle.
12) Date 12	SE Workshop 3. The main standard of systems engineering.
13) Date 13	SE Workshop 4. System Definition Practices - Requirements.
14) Date 14	SE Workshop 5. System Definition Practices - Architecture.
15) Date 15	SE Workshop 6. Systems of systems. Organizational Engineering.
16) Date 16	SE Workshop 7. Practical implementation of the system.
17) Date 17	Assessment