Subject code: F.1(2)	Subject name: Machine Learning		
Study load: 5 ECTS	Load of contact hours: 50	Study semester: Spring	Assessment: 5-point grade credit
Objectives:	The goal of the course - the study of machine learning the basics and the use of advanced software tools for creating data processing algorithms using machine learning methods		
Course outline:	Topics covered: 1. Basic concepts and basic approaches of machine learning. Superficial and deep learning 2. Compositional algorithms: bagging and boosting 3. Basic concepts of neural networks. The simplest neural networks 4. Multilayer direct distribution networks (MLP). Algorithm backpropagation 5. Hopfield neural network and its use 6. Networks based on self-organization. Kohonen Map 7. Features and modern technology training deep neural networks. Overview of software tools for developing algorithms using deep neural networks 8. The architecture and training convolution neural network 9. Application of convolution neural networks for classification and segmentation of objects in images 10. Recurrent deep neural networks. LSTM network and its application to the analysis of texts Contact lessons will be divided into two parts: lectures and labs with individual tasks.		
Learning Outcomes:	 By the end of the course students (in the terms of knowledge, skills, and attitudes) should be able to: 1 – critically evaluate typical approaches to the construction of information processing algorithms using machine learning methods; 2 – critically evaluate the principles of operation of surface and deep learning algorithms; 3 – critically evaluate the typical architectures of neural networks of various types, the features of their training and application; 4 – develop and program machine learning algorithms in Matlab and Python; 5 – model and research the effectiveness of information processing algorithms using machine learning methods. 		

Assessment Methods:	Assessment is split into two parts: test on lectures, individual tasks on labs, including 9 mandatory presentations (60% of points), and individual project in the end of the course (40% of points).		
Teacher(s):	Alexander Sirota, Elena Mitrofanova		
Prerequisite subject(s):	It requires prior knowledge of computer science, programming, discrete mathematics, probability theory, models and methods of decision making.		
Compulsory Literature:	Sirota, Alexandr Anatolievich. Methods and algorithms for data analysis and their modeling in MATLAB: [study guide] / A.A. Sirota. — St. Petersburg: BHV-Petersburg, 2016. — 381 p. : ill Bibliogr .: p. 371-374. — Sub. decree: p. 377-381. — ISBN 978-5- 9775-3778-0. Osovsky S. Neural networks for information processing / trans. from Polish I.D. Rudinsky M.: Finance and Statistics, 2002 344 p. Keras: The Python Deep Learning library official documentation [Electronic resource] Access mode: https: //keras.io.		
Replacement Literature:	Scholl F. Deep Learning in Python / F. Scholl. Publishing House Peter 2018 400 p.		
Participation requirements:	Lower limit of lectures attendance is 70%, each assessment and individual presentation must be presented by the end of the course		
Independent work:	 Developed application using deep neural network in Python Individual presentation of final project 		
Grading criteria scale or the minimal level necessary for passing the subject:	Failed< 50 points		
Information about the course:	Room, on at		
1) Date 1	Lecture 1 Classroom presentation: Basic concepts and basic approaches of machine learning. Superficial and deep learning		

Lab: Studying the properties of the simplest artificial perceptron. Visualization of activation functions Homework: Perform training of a neuron to perform the logical "or" function (using the adapt and train functions) Students presentations: Individual lab task3) Date 3Lecture 2
Homework: Perform training of a neuron to perform the logical "or" function (using the adapt and train functions) Students presentations: Individual lab task
function (using the adapt and train functions) Students presentations: Individual lab task
Students presentations: Individual lab task
*
3) Date 3 Lecture 2
b) Date 5 Decture 2
Classroom presentation: Compositional algorithms: bagging and
boosting
4) Date 4 Lab 2
Lab: Neural network data classifier with linear dividing boundary
Homework: Neural network data classifier with linear dividing
boundary (gaussian random vectors)
5) Date 5 Lab 3
Students presentations: Individual lab task
6) Date 6 Lecture 3
Classroom presentation: Basic concepts of neural networks. The
simplest neural networks
7) Date 7 Lab 4
Lab: Neural network classifier given with a nonlinear dividing
boundary
Homework: Neural network classifier given with a nonlinear
dividing boundary (gaussian random vectors)
8) Date 8 Lab 5
Students presentations: Individual lab task
9) Date 9 Lecture 4
Classroom presentation: Multilayer direct distribution networks
(MLP). Algorithm backpropagation
10) Date 10 Lab 6
Lab: Solving algebraic equations using a multilayer perceptron
Homework: Develop a program for solving equations of a given type
11) Date 11 Lab 7
Students presentations: Individual lab task
12) Date 12 Lecture 5
Classroom presentation: Hopfield neural network and its use
Classroom presentation: Networks based on self-organization.
Kohonen Map Classroom test: Artificial neural network
13) Date 13Lab 8
Lab b Lab: Hopfield network and its use as associative memory
Homework: Perform Hopfield network testing for various images. To
study the effect of the probability of pixel distortion on the quality of
restoration of the original image
14) Date 14 Lab 9
Students presentations: Individual lab task
15) Date 15 Lab 10
Lab: Kohonen network and its application
Homework: Develop a program for solving the problem of clustering
of many vectors in the form of clusters arranged accordingly

16) Date 16	Lab 11	
	Students presentations: Individual lab task	
17) Date 17	Lecture 6	
	Classroom presentation: Features and modern technology training	
	deep neural networks. Overview of software tools for developing	
	algorithms using deep neural networks	
	Classroom presentation: The architecture and training convolution	
	neural network	
18) Date 18	Lab 12	
	Lab: Deep neural networks and their application	
	Homework: Explore the possibilities of a convolutional neural	
	network	
19) Date 19	Lab 13	
	Students presentations: Individual lab task (1 points)	
20) Date 20	Lab 14	
	Lab: R-CNN Object Detector Training for Stop Sign Detection	
	Homework: Test a trained R-CNN object detector	
21) Date 21	Lab 15	
	Students presentations: Individual lab task	
22) Date 22	Lecture 7	
	Classroom presentation: Application of convolution neural networks	
	for classification and segmentation of objects in images	
23) Date 23	Lab 16	
	Lab: Handwritten digit recognition using convolutional neural	
	networks in Python with Keras	
	Homework: Develop a program to solve the problem of classifying a	
	source image using a deep convolutional neural network	
24) Date 24	Lecture 8	
	Classroom presentation: Recurrent deep neural networks. LSTM	
	network and its application to the analysis of texts	
	Classroom test: Deep neural networks	
25) Date 25	Lab 17	
	Students presentations: Final projects demonstration Students	
	presentations: Final lab test	