Subject code: F.1(2)	Subject name: Machine Learning		
Study load: 5 ECTS	Load of contact hours: 50	Study semester: Spring	Assessment: 5-point grade credit
Objectives:	The goal of the course - the study of machine learning the basics and the use of advanced software tools for creating data processing algorithms using machine learning methods		
Course outline:	 Topics covered: 1. Basic concepts and basic approaches of machine learning. Superficial and deep learning 2. Compositional algorithms: bagging and boosting 3. Basic concepts of neural networks. The simplest neural networks 4. Multilayer direct distribution networks (MLP). Algorithm backpropagation 5. Hopfield neural network and its use 6. Networks based on self-organization. Kohonen Map 7. Features and modern technology training deep neural networks. Overview of software tools for developing algorithms using deep neural networks 8. The architecture and training convolution neural network 9. Application of convolution neural networks for classification and segmentation of objects in images 10. Recurrent deep neural networks. LSTM network and its application to the analysis of texts Contact lessons will be divided into two parts: lectures and labs with individual tasks. 		
Learning Outcomes:	By the end of the cours and attitudes) should be 1 – critically evaluated information processing 2 – critically evaluated learning algorithms; 3 – critically evaluated various types, the feature 4 – develop and prograv Python; 5 – model and research algorithms using mach	se students (in the terms be able to: typical approaches to th g algorithms using mach the principles of operation the typical architectures ares of their training and am machine learning algon the effectiveness of in the learning methods.	s of knowledge, skills, he construction of hine learning methods; ion of surface and deep s of neural networks of d application; gorithms in Matlab and formation processing

Assessment Methods:	Assessment is split into two parts: test on lectures, individual tasks		
	on labs, including 9 mandatory presentations (60% of points), and		
	individual project in the end of the course (40% of points).		
Teacher(s):	Alexander Sirota, Elena Mitrofanova		
D			
Prerequisite	It requires prior knowledge of computer science, programming,		
subject(s):	discrete mathematics, probability theory, models and methods of		
Compulsory	Geosion making.		
L itoraturo:	analysis and their modeling in MATLAB: [study guide] $/ \Lambda \Lambda$		
	Sirota St. Petersburg: BHV_Petersburg, 2016 381 n · ill		
	Bibliogr : p 371-374 — Sub decree: p 377-381 — ISBN 978-5-		
	9775-3778-0		
	Osovsky S. Neural networks for information processing / trans. from		
	Polish I.D. Rudinsky M.: Finance and Statistics, 2002 344 p.		
	Keras: The Python Deep Learning library official documentation		
	[Electronic resource] Access mode: https://keras.io.		
Replacement	Scholl F. Deep Learning in Python / F. Scholl. Publishing House		
Literature:	Peter 2018 400 p.		
Participation	Lower limit of lectures attendance is 70%, each assessment and		
requirements:	individual presentation must be presented by the end of the course		
Independent work:	1 Developed application using deep neural network in Python		
independent worm	2 Individual presentation of final project		
	1 1 5		
Grading criteria scale			
or the minimal level	Failed < 50 points		
necessary for passing	Passed, grade 3 50-69 points		
the subject:	Passed, grade 4 70-89 points		
	Passed, grade 5 $\geq =90$ points		
	Ongoing assessment:		
	Tests: 20 points		
	Homework reports: 30 points		
	Presentation: 10 points		
	Final Draigate		
	Final Project: Final Jab test: 25 points		
	Final projects demonstration: 15 points		
	That projects demonstration. To points		
Information about the			
course:	Room, on at		
1) Date 1	Lecture 1		
	Classroom presentation: Basic concepts and basic approaches of		
	machine learning. Superficial and deep learning		

Lab: Studying the properties of the simplest artificial perceptron. Visualization of activation functions Homework: Perform training of a neuron to perform the logical "or" function (using the adapt and train functions) Students presentations: Individual lab task 3) Date 3
Visualization of activation functions Homework: Perform training of a neuron to perform the logical "or" function (using the adapt and train functions) Students presentations: Individual lab task 3) Date 3
 Homework: Perform training of a neuron to perform the logical "or" function (using the adapt and train functions) Students presentations: Individual lab task 3) Date 3
function (using the adapt and train functions) Students presentations: Individual lab task 3) Date 3 Lecture 2
3) Date 3 Lecture 2
3) Date 3 Lecture 2
b) Batto Electuite E
Classroom presentation: Compositional algorithms: bagging and
boosting
4) Date 4 Lab 2
Lab: Neural network data classifier with linear dividing boundary
Homework: Neural network data classifier with linear dividing
boundary (gaussian random vectors)
5) Date 5 Lab 3
Students presentations: Individual lab task
6) Date 6 Lecture 3
Classroom presentation: Basic concepts of neural networks. The
simplest neural networks
7) Date 7 Lab 4
Lab: Neural network classifier given with a nonlinear dividing
boundary
Homework: Neural network classifier given with a nonlinear
dividing boundary (gaussian random vectors)
8) Date 8 Lab 5
Students presentations: Individual lab task
9) Date 9 Lecture 4
Classroom presentation: Multilayer direct distribution networks
(MLP). Algorithm backpropagation
10) Date 10 Lab 6
Lab: Solving algebraic equations using a multilayer perceptron
Homework: Develop a program for solving equations of a given type
II) Date II Lab 7
Students presentations: Individual lab task
12) Date 12 Lecture 5
Classroom presentation: Hopfield neural network and its use
Classroom presentation: Networks based on self-organization.
Classroom test: Artificial noural network
13) Data 13 Lab 9
Lab o
Homework: Perform Honfield network testing for various images. To
study the effect of the probability of nixel distortion on the quality of
restoration of the original image
14) Date 14 Lab 9
Students presentations: Individual lab task
15) Date 15 Lab 10
Lab: Kohonen network and its application
Homework: Develop a program for solving the problem of clustering
of many vectors in the form of clusters arranged accordingly

16) Date 16	Lab 11
	Students presentations: Individual lab task
17) Date 17	Lecture 6
	Classroom presentation: Features and modern technology training
	deep neural networks. Overview of software tools for developing
	algorithms using deep neural networks
	Classroom presentation: The architecture and training convolution
	neural network
18) Date 18	Lab 12
	Lab: Deep neural networks and their application
	Homework: Explore the possibilities of a convolutional neural
	network
19) Date 19	Lab 13
	Students presentations: Individual lab task (1 points)
20) Date 20	Lab 14
	Lab: R-CNN Object Detector Training for Stop Sign Detection
	Homework: Test a trained R-CNN object detector
21) Date 21	Lab 15
	Students presentations: Individual lab task
22) Date 22	Lecture 7
	Classroom presentation: Application of convolution neural networks
	for classification and segmentation of objects in images
23) Date 23	Lab 16
	Lab: Handwritten digit recognition using convolutional neural
	networks in Python with Keras
	Homework: Develop a program to solve the problem of classifying a
	source image using a deep convolutional neural network
24) Date 24	Lecture 8
	Classroom presentation: Recurrent deep neural networks. LSTM
	network and its application to the analysis of texts
	Classroom test: Deep neural networks
25) Date 25	Lab 17
	Students presentations: Final projects demonstration Students
	presentations: Final lab test