Subject code:	Subject name: Computer Vision		
F.2(4)			
Study load: 2 ECTS	Load of contact hours: 26	Study semester: Spring	Assessment: Credit / No credit
Objectives:	The course discusses the basic concepts of computer vision, the principles of machine learning in the field of computer vision, algorithms for solving the problems of classifying and segmenting images, detecting objects in images, tracking objects in video, processing three-dimensional scenes and generating images. The purpose of the course is to study the basics and methods of computer vision and image processing, including the extraction of		
	semantic and metric information from images.		
Course outline:			
Learning Outcomes:	and attitudes) should be $1 - \text{solve applied prob}$ on computer vision tee	be able to: lems of analysis and in	ns of knowledge, skills, nage processing based is and its goals;

	3 – identifying some of the key application areas of computer vision;		
	4 - critically evaluate the digital imaging process;		
	5 – applying mathematical techniques to complete computer vision		
	tasks.		
Assessment Methods:	Assessment is split into two parts: individual tasks and group project		
	in the end of the course.		
Teacher(s):	Svetlana Bolotova		
D • • •			
Prerequisite subject(s):	None		
subject(s).			
Compulsory	Steve Holden, Computer Vision: Advanced Techniques and		
Literature:	Applications Hardcover. Clanrye International. 2019.		
Replacement	Sunila Gollapudi, Learn Computer Vision Using OpenCV. Apress;		
Literature:	1st ed. Edition. 2019.		
	Deniemin Dienske Eliet Andrea Handa On Community Wisher it		
	Benjamin Planche, Eliot Andres. Hands-On Computer Vision with TensorFlow 2. Packt Publishing. 2019.		
Participation	Lower limit of lectures attendance is 80%, each task and group		
requirements:	project must be presented by end of the course.		
-			
Independent work:	1. A human visual system model		
	2. Spatial filtering problem		
	3. Frequency Filtering problem		
	4. Object Detection task		
	5. Segmentation by watershed methods		
	6. The task of recognizing objects in the image		
	7. Tasks on large image collections		
	8. Face Recognition in Videos		
	9. Image overlay		
	10. Final group project		
Grading criteria scale			
or the minimal level	Failed < 50 points		
necessary for passing	Passed> = 50 points		
the subject:	Points distribution:		
	Ongoing assessment:		
	Individual Tasks: 30 points		
	Homework reports: 40 points		
	Final Croup Project: 30 points		
Information about	Final Group Project: 30 points		
the course:	Room, on at		
1) Date 1	Lecture 1		

	Classroom presentation: Computer Vision Overview
	Classroom presentation: Basic image processing algorithms
	Homework: About human visual system model (5 points)
2) Date 2	Workshop 1
,	Students presentations: Simple methods of image analysis
3) Date 3	Lecture 2
,	Classroom presentation: Representation of images
	Classroom presentation: Estimation of model parameters
	Homework: About spatial and frequency filtering problems (5 points)
4) Date 4	Workshop 2
	Students presentation: Image filtering. Basic segmentation.
	Segmentation by watershed methods.
5) Date 5	Lecture 3
	Classroom presentation: Machine learning in computer vision
	Homework: Image classification overview (5 points)
6) Date 6	Workshop 3
	Students presentation: Introduction in convolutional neural networks
7) Date 7	Lecture 4
	Classroom presentation: Methods for searching and localizing
	objects.
	Classroom presentation: Template Matching. Feature Detection.
	Contour analysis. Image generation
	Homework: Object Detection task (10 points)
8) Date 8	Workshop 4
	Classroom individual tasks: The task of recognizing objects in the
	image (15 points)
9) Date 9	Lecture 5
	Classroom presentation: Standard datasets and models in TensorFlow
	using the Transfer Learning approach as an example
	Homework: Example TensorFlow MNIST (5 points)
10) Date 10	Workshop 5
	Classroom individual tasks: Tasks on large image collections (15
	points)
11) Date 11	Lecture 6
	Classroom presentation: Machine learning in OpenCV
	Classroom presentation: Face Detection and Image Processing using
	OpenCV and Python
	Homework: Tracking moving objects in time and optical flow
	analysis (10 points)
12) Date 12	Workshop 6
	Students presentations: Real-time computer vision. Face Recognition
	in Videos. Image overlay
36) Date 13	Workshop 7
	Students presentations: Group projects demonstration (30 points)