Subject code: F.4(1)	Subject name: Mathematical Methods in Modern Information Technologies
Study load: 5 ECTS	Load of contact Study semester: Assessment: hours: 60 (lectures: 20 h, Autumn Exam labs: 40 h)
Objectives:	The primary objective of the course is to develop the understanding of connections between computer science and mathematics. The students will develop proficiency with the ability to apply mathematical methodologies to solving real world problems.
Course outline:	Topics covered: 1) Digital signal processing. 2) Integral Transforms and their Applications. 3) Linear algebra applications in computer science. 4) Systems of polynomial equations. 5) Introduction to Symbolic Computations. 6) Boolean algebra. 7) Superpositions of functions. Functional complexity.
Learning Outcomes:	By the end of the course students (in the terms of knowledge, skills, and attitudes) should be able to: 1 - critically evaluate basic concepts from Integral Transforms Theory, and apply them to theoretical and appropriate applied problems in computer science; 2 - use the concepts of digital signal processing in real-life applications; 3 - use the concepts of linear algebra in real-life applications and critical evaluate the connections between linear algebra and computer science; 4 - critically evaluate basic concepts from Boolean Algebra Theory, and apply them to theoretical and appropriate applied problems in computer science; 5 - solve systems of polynomial equations by symbolic methods.
Assessment Methods:	The final grade is composed of: 50% for individual or group project, 50% for final exam.
Teacher(s):	Alexander Loboda
Prerequisite subject(s):	None
Compulsory Literature:	

	Steven Smith "Digital Signal Processing: A Practical Guide for Engineers and Scientists". Newnes, 2013.
	R. L. Goodstein "Boolean Algebra". Dover Publications, 2012.
	James E. Humphreys "Introduction to Lie Algebras and Representation Theory". Springer, 1994.
	David Cox, John Little, Donal O'Shea "Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra". Springer; 2nd edition, 2006.
	Ian Anderson "A first course in discrete mathematics". Springer, 2001.
	L. Debnath "Wavelet Transforms and Time-Frequency Signal Analysis". Birkhauser, 2000.
Replacement Literature: Participation attend classes and to participate in class discussions, small group exercises and projects. Students are responsible for all material presented in each session. Attendance is considered in the calculation of the student's final grade. If a student misses 20\% or more of the class sessions, there will be grade penalties, and the	
instructor reserves the right to issue a failing grade for lack of	
attendance.	

Information about the course:	Room ___, on ___ at __
1) Date 1	Lecture 1 Digital signal processing
2) Date 2	Lab 1 Interpolation and approximation theory. Frequency response.
3) Date 3	Lab 2 Function series and their applications.
4) Date 4	Lecture 2 Integral Transforms and their Applications.
5) Date 5	Lab 3 The Fourier transform. The Laplace transform.
6) Date 6	Lab 4 The Radon transform.
7) Date 7	Lecture 3 Integral Transforms and their Applications.
8) Date 8	Lab 5 The wavelet transform.
9) Date 9	Lab 6 Discrete Fourier transform. Fast Fourier transform.
10) Date 10	Lecture 4 Linear algebra applications in computer science.
11) Date 11	Lab 7 Lagrange theorem. Weierstrass theorem.
12) Date 12	Lab 8 Systems of linear equations and other algebraic objects in computer science.
13) Date 13	Lecture 5 Systems of polynomial equations.
14) Date 14	Lab 9 Systems of polynomial equations related to some modern problems in mathematics (Lie algebras).
15) Date 15	Lab 10 Systems of polynomial equations related to some modern problems in mathematics (invertibility of polynomial mappings and the Jacobian Conjecture).
16) Date 16	Lecture 6 Introduction to Symbolic Computations.
17) Date 17	Lab 11 Elimination theory.
18) Date 18	Lab 12 Groebner bases.
19) Date 19	Lecture 7 Introduction to Symbolic Computations.
20) Date 20	Lab 13 Groebner bases.
21) Date 21	Lab 14 Other methods of polynomial systems solving.

22) Date 22	Lecture 8 Boolean algebra.
23) Date 23	Lab 15 Boolean function. Many-valued logic.
24) Date 24	Lab 16 Polynomial representations of the operations of Boolean algebra.
25) Date 25	Lecture 9 Superpositions of functions. Functional complexity.
26) Date 26	Lab 17 Hilbert superpositions and functional complexity.
27) Date 27	Lab 18 Elements of fuzzy logic.
28) Date 28	Lecture 10 Superpositions of functions. Functional complexity.
29) Date 29	Lab 19 Individual or group projects presentation
30) Date 30	Lab 20 Individual or group projects presentation

