Subject code: F.4(1)	Subject name: Mathematical Methods in Modern Information Technologies		
Study load: 5 ECTS	Load of contact hours: 60 (lectures: 20 h, labs: 40 h)	Study semester: Autumn	Assessment: Exam
Objectives:	The primary objective of the course is to develop the understanding of connections between computer science and mathematics. The students will develop proficiency with the ability to apply mathematical methodologies to solving real world problems.		
Course outline:	 Topics covered: 1) Digital signal processing. 2) Integral Transforms and their Applications. 3) Linear algebra applications in computer science. 4) Systems of polynomial equations. 5) Introduction to Symbolic Computations. 6) Boolean algebra. 7) Superpositions of functions. Functional complexity. 		
Learning Outcomes:	By the end of the course students (in the terms of knowledge, skills, and attitudes) should be able to: 1 – critically evaluate basic concepts from Integral Transforms Theory, and apply them to theoretical and appropriate applied problems in computer science; 2 – use the concepts of digital signal processing in real-life applications; 3 – use the concepts of linear algebra in real-life applications and critical evaluate the connections between linear algebra and computer science; 4 – critically evaluate basic concepts from Boolean Algebra Theory, and apply them to theoretical and appropriate applied problems in computer science; 5 – solve systems of polynomial equations by symbolic methods.		
Assessment Methods:	The final grade is composed of: 50% for individual or group project, 50% for final exam.		
Teacher(s):	Alexander Loboda		
Prerequisite subject(s):	None		
Compulsory Literature:			

	Steven Smith "Digital Signal Processing: A Practical Guide for	
	Engineers and Scientists". Newnes, 2013.	
	R. L. Goodstein "Boolean Algebra". Dover Publications, 2012.	
	James E. Humphreys "Introduction to Lie Algebras and	
	Representation Theory". Springer, 1994.	
	David Cox, John Little, Donal O'Shea "Ideals, Varieties, and	
	Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra". Springer; 2nd edition, 2006.	
Replacement	Ian Anderson "A first course in discrete mathematics". Springer,	
Literature:	2001.	
	L. Debnath "Wavelet Transforms and Time-Frequency Signal Analysis". Birkhauser, 2000.	
Participation	Attendance is mandatory for this course. Students are required to	
requirements:	attend classes and to participate in class discussions, small group	
	exercises and projects. Students are responsible for all material	
	presented in each session. Attendance is considered in the	
	calculation of the student's final grade. If a student misses 20% or	
	more of the class sessions, there will be grade penalties, and the	
	instructor reserves the right to issue a failing grade for lack of	
	attendance.	
Independent work:	1. Advanced approximation methods.	
	2. Function series and their applications.	
	3. The Fourier transform applications.	
	4. The Radon transform applications.	
	5. The wavelet transform applications.	
	 Solving large systems of polynomial equations: methods and 	
	main problems.	
	7. Symbolic computation algorithms.	
	8. Lie algebras and their applications.	
	9. Applications and examples of experimental mathematics.	
	10. Fuzzy logic applications in computer science.	
	ii.	
Grading criteria scale	Course Grading:	
or the minimal level	Projects = 50%	
necessary for passing	Final Exam = 50%	
the subject:		
	Grading Scale:	
	90-100 (A – Superior Work)	
	70-89 (B – Good Work)	
	50-69 (C – Average Work)	
	0-49 (F – Unsatisfactory Work)	

Information about	
the course:	Doom on at
the course.	Room, on at
1) Data 1	Lecture 1
1) Date 1	
	Digital signal processing
2) Date 2	Lab 1
	Interpolation and approximation theory. Frequency response.
3) Date 3	Lab 2
	Function series and their applications.
4) Date 4	Lecture 2
	Integral Transforms and their Applications.
5) Date 5	Lab 3
	The Fourier transform. The Laplace transform.
6) Date 6	Lab 4
	The Radon transform.
7) Date 7	Lecture 3
	Integral Transforms and their Applications.
8) Date 8	Lab 5
,	The wavelet transform.
9) Date 9	Lab 6
<i>y</i>) Dute <i>y</i>	Discrete Fourier transform. Fast Fourier transform.
10) Date 10	Lecture 4
10) Date 10	Linear algebra applications in computer science.
11) Date 11	Lab 7
11) Date 11	Lagrange theorem. Weierstrass theorem.
12) Date 12	Lagrange theorem. weierstrass theorem.
12) Date 12	Systems of linear equations and other algebraic objects in computer
	science.
12) Data 12	Lecture 5
13) Date 13	
14) D-4-14	Systems of polynomial equations.
14) Date 14	Lab 9
	Systems of polynomial equations related to some modern problems
15) D-4 15	in mathematics (Lie algebras).
15) Date 15	Lab 10
	Systems of polynomial equations related to some modern problems
	in mathematics (invertibility of polynomial mappings and the
10 D / 10	Jacobian Conjecture).
16) Date 16	Lecture 6
	Introduction to Symbolic Computations.
17) Date 17	Lab 11
	Elimination theory.
18) Date 18	Lab 12
	Groebner bases.
19) Date 19	Lecture 7
	Introduction to Symbolic Computations.
20) Date 20	Lab 13
	Groebner bases.
21) Date 21	Lab 14
	Other methods of polynomial systems solving.

22) Date 22	Lecture 8	
	Boolean algebra.	
23) Date 23	Lab 15	
	Boolean function. Many-valued logic.	
24) Date 24	Lab 16	
	Polynomial representations of the operations of Boolean algebra.	
25) Date 25	Lecture 9	
	Superpositions of functions. Functional complexity.	
26) Date 26	Lab 17	
	Hilbert superpositions and functional complexity.	
27) Date 27	Lab 18	
	Elements of fuzzy logic.	
28) Date 28	Lecture 10	
	Superpositions of functions. Functional complexity.	
29) Date 29	Lab 19	
	Individual or group projects presentation	
30) Date 30	Lab 20	
	Individual or group projects presentation	