Subject code:	Subject name: Computer Game Programming Basics		
G.2(1)			
Study load: 4 ECTS	Load of contact hours: 60	Study semester: Autumn	Assessment: Exam
Objectives:	The purpose of the discipline is to study the basic language tools and capabilities of the game application programming tool system, generalize a wide range of practical experience in the field of computer game programming and consolidate the knowledge gained in solving specific problems.		
Course outline:	 Topics covered: 1. Introduction to 2. Introduction to 3. Introduction to 4. Introduction to 5. Introduction to 6. Analysis and de 7. Concurrency di 8. Introduction to intelligence 	high-performance comp video game development the basics of computer game engine architectur simulation modeling evelopment of algorithm ifferent view the development of app	outing nt tools game design re ns lied game artificial
Learning Outcomes: Assessment Methods:	 By the end of the course students (in the terms of knowledge, skills, and attitudes) should be able to: 1 – write medium-level game applications; 2 – critically evaluate the architecture of modern game engines and virtual reality systems; 3 – implement applied game artificial intelligence; 4 – critically evaluate computer game design and simulation; 5 – critically evaluate fundamentals of game application architecture design. The assessment of knowledge, skills and abilities that characterize the stages of competence formation in the course of studying the discipline is carried out during the current and intermediate attestations. Current certification is conducted in the form of a		
Teacher(s):	written and oral survey includes theoretical que knowledge obtained an allows you to assess th assessment uses qualita Vyacheslav Tarasov	v (individual). Intermedi estions that allow you to ad the defense of the cor e degree of formation or ative assessment scales.	ate certification o assess the level of atrol work, which f skills. The

Prerequisite	1. Modern programming technologies.	
subject(s):	2. Parallel programming.	
	3. Algorithms and data structures.Computer Architecture	
	4. Operating Systems	
Compulsory Literature:	1. Jason Gregory, Game Engine Architecture, 2018, A K Peters/CRC Press	
	2. Georgios N. Yannakakis, Julian Togelius, Artificial Intelligence and Games, 2018, CRC Press	
Replacement Literature:	1. John M. Quick. Learn to implement games with code, 2017, CRC Press	
	2. Colleen Macklin, John Sharp Games, Design, and Play, 2016, Addison-Wesley Professional	
Participation requirements:	None.	
Independent work:	 Multithreading and parallel computing. Processing and analysis of data. Smart content generation. Sorting. Algorithms for graph traversal, finding ways. Differential equations in partial derivatives. 	
Grading criteria scale	Points distribution:	
or the minimal level	Excellent – Sufficient skills: correct and specific answers without	
necessary for passing	major mistakes, several inaccuracies allowed;	
the subject:	Good – Sufficient skills: correct and specific answers without major mistakes, two or three minor mistakes;	
	Satisfactory – General understanding of the subject, several mistakes;	
	Unsatisfactory – Insufficient understanding of the subject: wrong answer.	
Information about		
the course:	Room, on at	
1) Date 1	Lecture 1	
	Classroom presentation: CPU/GPU development	
	Classroom presentation: multithreaded computing in games, game	
	designer responsibilities	

	Homework: Overview of GPU companies	
2) Date 2	Game Programming Workshop 1	
,	Students presentations: Overview of GPU companies	
	Classroom test: CPU/GPU development, multithreaded computing in	
	games (3 points)	
3) Date 3	Lecture 2	
,	Classroom presentation: The graphics rendering	
	Classroom presentation: The design of the game camera	
	Homework: Errors in the design of the game camera	
4) Date 4	Game Programming Workshop 2	
,	Students presentation: Errors in the design of the game camera	
	Classroom test: The graphics rendering, The design of the game	
	camera (3 points)	
5) Date 5	Lecture 3	
	Classroom presentation: Introduction to video game development	
	tools.	
	Classroom presentation: Modern game engines.	
	Homework: Open source game engines (5 points)	
6) Date 6	Game Programming Workshop 3	
	Group classroom task: Programming simple games	
	Classroom test: Open source game engines, introduction to video	
	game development tools. (3 points)	
7) Date 7	Lecture 4	
	Classroom presentation: Introduction to the basics of computer game	
	design and gameCraft	
	Homework: Iterative game design	
8) Date 8	Game Programming Workshop 4	
	Students presentations: GameCraft Analyses Report (10 points)	
9) Date 9	Lecture 5	
	Classroom presentation: Prototyping	
10) D-4- 10	Homework: Prototypes for group projects (5 points)	
10) Date 10	Game Programming workshop 5	
	Classroom test. Prototyping methods (2 points)	
11) Data 11	L acture 6	
11) Date 11	Classroom presentation: Level design in strategies shooters	
	immersive sime	
	Classroom presentation: Level analyses in genre specific games	
	Chassicom presentation. Dever analyses in genie speente games	
	Homework: Level design in stealth games, rouge-like games.	
	adventure games (5 points)	
12) Date 12	Game Programming Workshop 6	
,	Students presentations: Level design in stealth games, rouge-like	
	games, adventure games	
	Classroom test: Level design basics (3 points)	
13) Date 13	Lecture 7	
	Classroom presentation: Introduction to game engine architecture.	
	Homework: State of parallel execution and data synchronization	

14) Doto 14	Come Programming Workshop 7
14) Date 14	Game Programming worksnop /
	Classroom test: Game engine architecture (3 points)
	Students presentations: Unity3d and UnrealEngine
15) Date 15	Lecture 8
	Classroom presentation: Implementing a multithreaded game engine
	architecture
16) Date 16	Game Programming Workshop 8
,	Classroom test: Multithreaded game engine architecture (7 points)
	Group classroom task: Getting experience working with the game
	engine
17) Date 17	Lecture 9
11) Date 17	Classroom presentation: Physics movement mechanics in game
	ongino
	Classes and the Constitute Animations
	Classroom presentation: UI, Coroutines, Animations
	Homework: applying knowledge in student projects
18) Date 18	Game Programming Workshop 9
	Classroom test: The basics of the game engine
	Students presentations: Prototyping results
19) Date 19	Lecture 10
	Classroom presentation: Introduction to simulation
	Homework: Physics modelling
20) Date 20	Game Programming Workshop 10
,	Classroom test: Introduction to simulation
	Students presentations: Physics modelling results
21) Date 21	Lecture 11
21) Duve 21	Classroom presentation: 3d models and prefabs
	Chussroom presentation. Su models and pretaos
	Homework: Create simple models and setting behaviour
	Homework. Create simple models and setting benaviour
22) Date 22	Came Programming Workshon 11
22) Datt 22	Individual task: Implementation of the collision and destruction
	model (5 points)
	Studente magentationes Simple models negult
22) D (22	Students presentations: Simple models result
25) Date 25	Lecture 12
	Classroom presentation: Light modeling in games, shaders
	Homework: Implementation of light reflection
24) Date 24	Game Programming Workshop 12
	Students presentations: Light reflection result (5 points)
25) Date 25	Lecture 13
	Classroom presentation: Introduction to the development of applied
	game artificial intelligence
26) Date 26	Game Design Workshop 13
	Group classroom task: Implementation of artificial intelligence in the
	game engine.
	Homework: The main tasks of artificial intelligence in games (10
	points)
27) Date 27	Lecture 14
	Classroom presentation: Pathfinder algorithms
28) Deto 28	Cama Dasign Workshop 1/
20) Dale 20	Jame Design Workshop 14

	Classroom individual task: Algorithm A*	
29) Date 29	Lecture 15	
	Classroom presentation: Game Build and Publishing Details	
30) Date 30	Game Design Workshop 15	
	Students presentations: Group projects demonstration (10 points)	